Fair Clustering Through Fairlets
نویسندگان
چکیده
We study the question of fair clustering under the disparate impact doctrine, where each protected class must have approximately equal representation in every cluster. We formulate the fair clustering problem under both the k-center and the k-median objectives, and show that even with two protected classes the problem is challenging, as the optimum solution can violate common conventions—for instance a point may no longer be assigned to its nearest cluster center! En route we introduce the concept of fairlets, which are minimal sets that satisfy fair representation while approximately preserving the clustering objective. We show that any fair clustering problem can be decomposed into first finding good fairlets, and then using existing machinery for traditional clustering algorithms. While finding good fairlets can be NP-hard, we proceed to obtain efficient approximation algorithms based on minimum cost flow. We empirically quantify the value of fair clustering on real-world datasets with sensitive attributes.
منابع مشابه
A Comparative Study of the Principles of Fair Proceeding in Iran with Tax Litigation patterns in the United States, Britain, France and Germany
One of the most important economic topics in every country is considering tax issues as a way of increasing the government's income through attracting public confidence by observing the principles of proceeding in the tax system of the country which might likely cause a national production boom, increase economic growth rate, reduce unemployment and the fair distribution of wealth. In this rega...
متن کاملWord clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering
The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملAnalyzing Framing through the Casts of Characters in the News
We present an unsupervised model for the discovery and clustering of latent “personas” (characterizations of entities). Our model simultaneously clusters documents featuring similar collections of personas. We evaluate this model on a collection of news articles about immigration, showing that personas help predict the coarse-grained framing annotations in the Media Frames Corpus. We also intro...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کامل